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The dicopper-substituted �-Keggin silicotungstate with
bis-�-1,1-azido ligands TBA4H2[�-SiW10O36Cu2(�-1,1-N3)2]
(TBA = tetrabutylammonium) could act as an effective homo-
geneous precatalyst for the one-pot synthesis of various kinds
of 1,4-disubstituted-1,2,3-triazole derivatives from organic hal-
ides, NaN3, and alkynes.

Triazole derivatives are very important five-membered ni-
trogen heterocycles and have a wide range of applications in-
cluding biochemicals, agrochemicals, dyes, photostabilizers,
and corrosion inhibitors.1 The Huisgen 1,3-dipolar cycloaddition
of organic azides to alkynes is one of the most powerful synthet-
ic routes to triazole derivatives and shows high chemoselectivity
because many functional groups do not react with organic azides
or alkynes.2 However, this transformation is not regioselective
and gives a ca. 1:1 mixture of 1,4- and 1,5-regioisomers.2 The
groups of Sharpless et al.3a and Meldal et al.3b have independent-
ly reported that copper salts dramatically accelerate the reaction
and make it totally regioselective to the 1,4-regioisomers. Now,
the copper-mediated regioselective 1,3-dipolar cycloaddition
has been used for the tailor-made syntheses of triazole deriva-
tives with various functional groups because of the exclusive
1,4-regioselectivity and wide synthetic scope.3 Recently, the
one-pot synthesis of 1,4-disubstituted-1,2,3-triazole derivatives
from organic halides, NaN3, and alkynes has received much
attention.4

The interests in the catalysis of partially metal-substituted
polyoxometalates, which are synthesized by the substitution of
metal cations into the vacant site(s) of lacunary polyoxometa-
lates as structural motifs, have been growing because of the rich
diversity of lacunary polyoxometalates.5 To date, various kinds
of metal-substituted polyoxometalates have been synthesized
and used as catalysts for various functional group transforma-
tions.5 Very recently, we have reported that dicopper-substituted
�-Keggin silicotungstate with bis-�-1,1-azido ligands TBA4H2-
[�-SiW10O36Cu2(�-1,1-N3)2] (denoted as I, Figure S1) showed
high catalytic activity for the oxidative alkyne–alkyne homocou-
pling6a,6b and 1,3-dipolar cycloaddition of organic azides to al-
kynes.6c In this paper, the application of I to the one-pot three-
component reaction of organic halides, NaN3, and alkynes to
produce 1,4-disubstituted-1,2,3-triazole derivatives is described
(eq 1).
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First, we examined the reactivity of organic halides with
NaN3 prior to the development of a one-pot sequential synthesis

of 1,4-disubstituted-1,2,3-triazole derivatives (Table S1). The
reaction smoothly proceeded in polar organic solvents such as
acetonitrile, methanol, and N,N-dimethylformamide. After the
reaction was completed, the pure organic azides were obtained
in >90% isolated yields by Kugelrohr distillation.

Using the benzyl azide obtained, the I-mediated 1,3-dipolar
cycloaddition of benzyl azide to phenylacetylene was next car-
ried out in order to optimize the reaction conditions (Table S2).
Among the solvents tested, polar organic solvents such as aceto-
nitrile, methanol, and N,N-dimethylformamide gave the corre-
sponding 1,4-disubstituted-1,2,3-triazole of 1-benzyl-4-phenyl-
1H-1,2,3-triazole in high yields, while non-polar toluene, hep-
tane, and 1,2-dichloroethane were poor solvents. In polar organic
solvents, the reactions efficiently proceeded without any addi-
tives such as reducing agents and nitrogen bases. It is noted that
no precautions to exclude oxygen were necessary in all I-medi-
ated reactions. Under the optimized conditions, various combi-
nations of organic azides and alkynes were efficiently converted
into the corresponding 1,4-disubstituted-1,2,3-triazole deriva-
tives in excellent yields (14 examples, Table S3).

Under the conditions described in Table S2, the 1,3-dipolar
cycloaddition did not proceed at all in the absence of the catalyst
or in the presence of copper(I) and copper(II) salts such as
[Cu(OTf)]2.C6H6, [Cu(CH3CN)4]PF6, [Cu(CH3CN)4]ClO4,
Cu(ClO4)2.6H2O, CuCl2, and CuSO4

.5H2O. The monocopper-
substituted silicotungstate TBA4[�-H2SiW11CuO39], the non-
copper-substituted silicotungstate TBA4[�-SiW12O40], and a
mixture of TBA4[�-SiW10O34(H2O)2] and CuCl2 were almost
inactive. Therefore, the diazido-bridged dicopper core {Cu2(�-
1,1-N3)2} in I plays an important role in the present 1,3-dipolar
cycloaddition. We have very recently proposed that the I-
promoted alkyne–alkyne homocoupling proceeds via the dicop-
per(II) alkynyl intermediate of {Cu2(�-C�CR)2} followed by
the elimination of the corresponding 1,3-diyne with the forma-
tion of reduced dicopper(I) species.6a,6b Under the present trans-
formations, the corresponding 1,3-diynes could be detected as
by-products albeit in small amounts in most substrates tested
(<1% yield), suggesting the formation of the dicopper(I) spe-
cies. Thus, it is likely that the copper(I) acetylide species would
be formed by the reaction of the dicopper(I) species in I with an
alkyne followed by the reaction with an azide to form the corre-
sponding triazole.

Finally, we turn our attention to the one-pot three compo-
nent synthesis of 1,4-disubstituted-1,2,3-triazole derivatives
from the corresponding organic halides, NaN3, and alkynes
(12 examples, Table 1).4,7,8 The overall conversion of organic
halides to 1,4-disubstituted-1,2,3-triazole derivatives was ac-
complished as a one-pot procedure by simply adding alkynes
to the reaction solution after the SN2 displacement of organic
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halides with NaN3 was completed. The procedures are as fol-
lows: Into a glass vial were successively placed I (2mol%),
an organic halide (0.5mmol), NaN3 (0.525mmol, 1.05 equiv
with respect to halides), and acetonitrile/methanol (2mL, 1/1
v/v). The reaction mixture was stirred at 60 �C. After 7 h, an al-
kyne (1mmol, 2 equiv with respect to halides) was added to the
mixture and the reaction was carried out at 60 �C for an appro-
priate time. Although it took longer reaction times to attain high
yields of the corresponding 1,4-disubstituted-1,2,3-triazoles, the
amounts of alkynes could be reduced: The reaction of 1a with an
equimolar amount of 2a under the conditions in Table 1 gave the
corresponding triazole in 74% yield for 53 h, for example. Iso-
lation and purification of 1,4-disubstituted-1,2,3-triazoles were
carried out by column chromatography on silica gel using a
mixed solvent of hexane and diethyl ether as an eluent (5/1 v/v).

Benzyl halides as well as alkyl halides were successfully
used and the reactions efficiently proceeded to give the corre-
sponding 1,4-disubstituted-1,2,3-triazoles in excellent yields.
For alkynes, electron-rich and -poor phenylacetylenes as well
as aliphatic terminal alkynes worked well as reaction partners
of organic halides. It was confirmed by X-ray crystallographic
analyses and/or NOE experiments that the 1,4-disubstituted-
1,2,3-triazole derivatives were formed in a completely regiose-
lective manner without formation of 1,5-regioisomers in all cas-
es.8 In addition, no competitive formation of N–H triazoles due

to the direct addition of N3
� to alkynes was observed in any

case.
In summary, the efficient one-pot synthesis of 1,4-disubsti-

tuted-1,2,3-triazole derivatives from organic halides, NaN3,
and alkynes was realized in the presence of I.
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Table 1. One-pot syntheses of 1,4-disubstituted-1,2,3-triazole
derivatives from organic halides, NaN3, and alkynes catalyzed
by Ia

R X
NN

N

R'

R
i) NaN3 ii) R'

Entry Halide Alkyne Timeb

/h 
Yieldc

/% 

1 31

2 1a 48

3 1a 48

4 1a 31

5 1a 31

6 1a 31

7 1a 72

8 1a 72

9 2a 50

10 1b 2b 53
11 2a 26

12 1c 2f 55

81

89

90

94

88d

91d

94d

71

92

87d

79

65

Cl
(1a) (2a)

(2b)

(2c)

MeO (2b)

F (2b)

(2f)

Cl

(2g)

(2h)

Cl
(1b)

(1c)I

aReaction conditions: (i) I (2mol% with respect to halides), hal-
ide (0.5mmol), NaN3 (0.525mmol), CH3CN/CH3OH (2mL,
1/1 v/v), 60 �C under an air atmosphere for 7 h, (ii) followed
by addition of an alkyne (1mmol), 60 �C, under an air atmo-
sphere. bTotal reaction time. cIsolated yields. dGC yields.
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